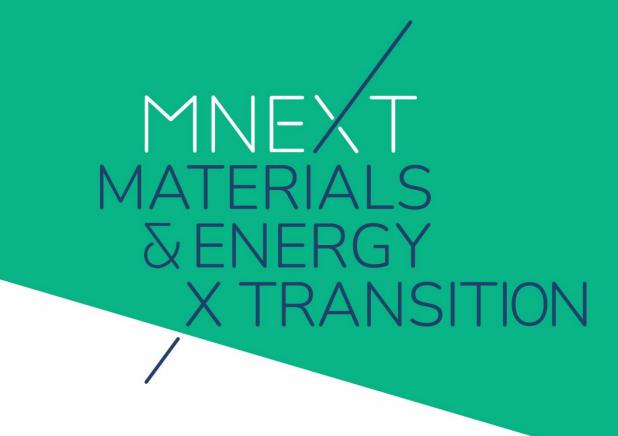
Deactivating mycelium using high-voltage electricity

Verest, M.

Project/Research Group: FungiZap / Biobased Building **Contact information:** mverest@avans.nl Date: January 2025


An Introduction

Mycelium-based building materials face a significant challenge: fungal deactivation requires considerable time and energy. Using high-voltage electricity offers a faster and more energy-efficient alternative. This approach can deactivate the mycelium while preserving the structural integrity of the fungal material.

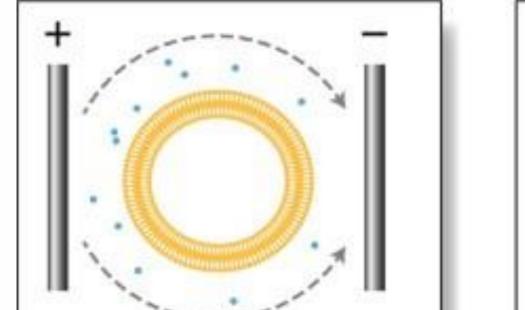
The Results and Conclusions

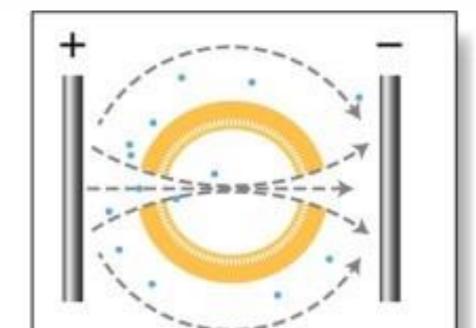
Positive Observations

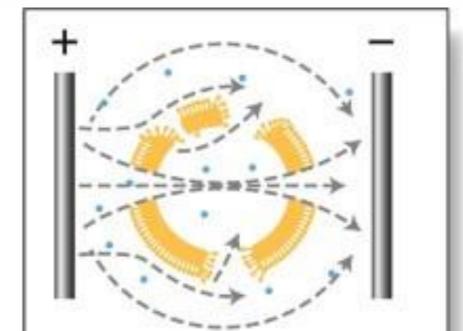
- It was observed you can increase mycelium growth with electrical stimulation
- More frequent exposure has been observed to limit growth in some strains

The Theory

Using high-voltage electricity, cell death can occur due to electroporation (1). This would have the benefit of killing the cell while leaving the cell wall intact, allowing any mycelium bio-composite to retain its full mechanical strength


- It was discovered that some types of treatment synergise, greatly increasing the deactivation.
- The moulds seemed effective at lowering the chance of breakdown (though not as expected)




Control sample (left) and the mixed treatment sample (right)

The Challenges

Breakdown still occurred occasionally during testing,

Na ⁺ ion	Na ⁺ ion	Irreversible electroporation Electric field passes through the cell membrane resulting in permanent permeabilization of the cell, loss of homeostasis and apoptotic-like cell death.	 exploding one sample. Large contaminations of A. niger (black mold) occurred on the bio-composites in the first rounds of testing. The used high-voltage parameters used in the set-up were insufficient to deactivate the mycelium fully.
No electroporation Cellular electroporation (1	Reversible electroporation Electric field temporarily disturbs the phospholipid bilayer allowing molecules to pass through the cell membrane into the cell.		

The Methods

- 1. A mould was designed and 3D printed to lower the chance of di-electric breakdown
- 2. Pure mycelium and mycelium bio-composites were grown in the laboratory
- 3. These samples were tested using the high voltage set-up
- 4. After testing, these samples were replated in the laboratory
- 5. Pictures were taken of the mycelial growth every few

3D printed petridish holder with supports

Exploded dish holder

1. Lunelli, L., Cussenot, O., & de la Rosette, J. J. (2021). Irreversible Electroporation (IRE) for Prostate Cancer. Interventional Urology, 241-247

