
www.coebbe.nl

Dijkstra’s Algorithm adapted for E-Truck
charging in Smart Energy Hubs
Automating the process of decision making for optimal vehicle charging route for truck drivers

Termohlen, R. P. J., Supervisor: Cliteur, M.
Project/Research Group: Project KOP, Smart Energy
Contact information: rpj.termohlen@student.avans.nl
Date: January 16th, 2025

In light of the current industry push towards electric
vehicles, trucks will also be electrified. For electric cars,
drivers can use programs such as A Better Route Planner to
find the best places to charge. However, software and
simulation models like this are not yet available for truck
drivers.

Currently, Smart Energy Hubs are being developed. These
are energy systems designed to reduce grid congestion, by
locally sharing produced energy and routing the energy
flow to balance supply and demand, in order to be able to
still meet the contracted power take-off. Charging stations
can be a part of this as well to sell excess energy. The
aforementioned model will be geared towards such energy
hubs, specifically De Waterlaat, in the Eindhoven Brainport
region.

Methodology

Resulting algorithm

Conclusion & Recommendations

To solve this problem systematically, Dijkstra’s Algorithm
has been modified to take the vehicle’s State of Charge
into account.

References
1. Wikipedia, Kortstepad-algoritme, (n.d.),

https://nl.wikipedia.org/wiki/Kortstepad-algoritme

In order to automate the route selection process, the
shortest route along the charging points must be found,
while considering whether or not the vehicle is able to
reach that point. This consideration depends on the State
of Charge.

A suitable method to determine this, is graph theory,
specifically, Dijkstra’s Algorithm. This mathematical
algorithm find the least costly (e.g. shortest, or cheapest,
etc.) route from starting point to destination [1]. This
reduces the model to the following problem: Find the
fastest route from the starting point S to destination T,
while determining where to charge if necessary.

Figure 1: Example of the graph that needs to be solved in order to adapt
Dijkstra’s Algorithm. The weight of the graph is the calculated travelling time in
seconds (in italics) with the original distance above. Points A to E have two
possibilities: “charging” and “not charging”. The default is “not charging”. In
order to distinguish between “charging” and ”not charging”, the charging
option is treated as a separate point with a lower case l added to the letter
(from Dutch “laden”). The available charging power is listed in blue. The
purple block (bottom-left) contains the constraints the algorithm must take
into consideration.

Figure 2: Resulting algorithm to accommodate charging decisions

After test runs, this algorithm turns out to be adequate to
solve the problem at hand.

It is recommended for this project that the
implementation be done by either IT students or
programmers

