

Dutch Delight – health opportunities of tulip pigments Maaike Smelt, Hanze University of Applied Sciences, 21st of June 2022

Towards a sustainable and healthy society & economy

Towards a sustainable and healthy society & economy

Knowledge Center Biobased Economy - Institute for Life Science & Technology Hanze University of Applied Science Groningen

- Conversion of biomass to bioactive (fine) chemicals and materials
- Potential use as building blocks, commodity chemicals, food, or pharmaceuticals

Lutein from Tagetes

Agronomy Journal

Integrated Pest Management

Crop Rotation with *Tagetes* sp. is an Alternative to Chemical Fumigation for Control of Root-Lesion Nematodes

L.Bruce Reynolds 💌, John W. Potter, Bonnie R. Ball-Coelho

- Biological pesticide
- Improves soil quality

Nerseliný

- Insect population
- Source of luteine

• Pharma, food supplement, cosmetics, anti-oxidant

share your talent. move the world.

Andre Heeres – lector Biobased Chemistry & Refinery

Project proces & status

- Tagetes sp selection plant breeding programme
- Mechanical Harvest (17ha)
- Drying & Milling (>5ktons)
- Extraction (from 50 to 500L)
- Hydrolysis & Purification optimised
- Stabilisation & Modification

New Businesses Agrifood

share your talent. move the world.

Kompetenzzentrum

Niedersachsen • Netzwerk Nachwachsende Rohstoffe und Bioökonomie e.V.

Anthocyanins

- Water-soluble pigments found in flowers and fruits
- Family of 15-carbon molecules containing phenolic rings and attached sugars
- Macromolecules stored in plant vacuoles, chloroplasts, and nucleus of epidermal cells in leaves, bark, flower petals or fruit skin

Physiological function of the pigments:

- Attraction of insect pollinators
- Protection by ROS scavenging
- In leaves: support photosynthesis? Gould et al 2000

<u>Many health benefits described/suggested</u>: anti-oxidant effects, anticardiovascular diseases, anti-inflammatory effects normalization of metabolic disorders

Putative antimicrobial effects

Potential as antibiotic or natural preservative

Anthocyanidin	R3	R5	R6	R7	R3'	R4'	R5′
Delphinidin	ОН	ОН	Н	ОН	OH	ОН	ОН
Cyanidin	ОН	ОН	н	ОН	ОН	ОН	н
Petunidin	ОН	ОН	Н	ОН	OMe	ОН	ОН
Peonidin	ОН	ОН	н	ОН	OMe	ОН	н
Malvinidin	ОН	ОН	Н	ОН	OMe	ОН	OMe
Pelargonidin	ОН	ОН	н	ОН	н	ОН	н

Source	Extract & Concentration	Strains*	Effectivity	Ref.		
Raspberry, Cranberry, Elderberry, Strawberry, Bilberry,	Whole berry extract (0,25-1%)	НР	All berries inhibited growth at all concentrations. Optiberry, Blueberry and Bilberry most	9		
Blueberry, Optiberry			effective			
Cranberry	Whole cranberry concentrate (0-7,5% w/w)	EC	Cranberry inhibits E. coli growth in ground meet and induced downregulation of membrane	10		
			protein expression			
Bilberry, Lingonberry, Cranberry, Red Raspberry, Cloudberry,	Phenolic extract (1 mg/mL)	BC, CJ, CP, HP, SA, SE, CA	Antimicrobial action depends on berry and micro-organism. B. cereus growth was inhibited by	11		
Strawberry, Black currant, Sea buckthorn berry, Chokeberry,			all berry extracts, whereas cloudberry appeared to inhibit all tested micro-organisms			
Highbush bilberry, Crowberry				1		
Cranberry	Anthocyanin extract (MIC value 14,80-29,15 mg/L)	EC	Cranberry anthocyanins effectively inhibit E. coli growth at low concentrations. Effect is	12		
			independent on pH and anthocyanins appear to disrupt the outer bacterial membrane within			
			20 minutes.			
Bilberry, Blueberry	Anthocyanin extract (50uL)	LM, SA, BS, EF, EC, PA, CF, ST, & yeast	Anthocyanin extracts each contained 5 different anthocyanins. All bacterial strains were	13		
			to anthocyanins depended on the			
Di	fficult to interpret due	e to use of crud	e (phenolic) extracts sitive and gram-negative strains.			
Pomegranate	lack of standardisation and resolution in microbial assays					
and	Iack of Standardisation and resolution in initial assays					
		SS, SFC				
Blueberry, Raspberry, Lingonberry, Blackcurrant, Cloudberry,	Phenolic extract (0,8-7 mg/well), and cyanidin-3-	BL, EF, EC, LC, LJ, LP, LP, LR, LRS, SE	Cyanidin-3-glucoside inhibited only E coli. Berry phenolic extracts strongly inhibited growth of	15		
Cranberry, Sea buckthornberry, Strawberry	glucoside (28 ug/well)		E. coli, S. enterica. Gram-positive lactobacilli were not inhibited.			
Zelen, Sauvignon Blanc, Rebula, Cabernet Sauvignon, Merlot and	Whole phenolic extract in 1:1 H2O:EtOH (MIC value	SA, EC, BC, LM, SI, CJ	Pinot Noir gave the highes yield of phenolics, including anthocyanins and the lowest MIC-value.	16		
Pinot Noir grapes	6.4g/L pinot noir against L. monocytogenes)		Gram-positive strains appeared to be most sensitive to phenolic compounds than gram-			
			negative strains.			
Cloudberry	Phenolic extract (1mg/mL) (MIC-value to E. coli	SA, EC, PA, LRS, SC, CA	Strong inhibition of S. aureus growth, medium inhibition of E. coli and P. aeruginosa growth. S.	17		
	adhesion to red blood cells approx. 5 ug/mL)		cerevisiae, C. albicans, L. rhamnosus growth were not affected.			
Blueberry	Anthocyanin extract (50-1000 ug/mL)	Multidrug resistant PA, EC, SA, PM,	Extract contained 7 different anthocyanin moieties. The mixture strongly inhibited S. aureus	18		
		AB	growth. In all strains either the lag-phase of growth was delayed or the final OD was			
	moderately reduced. Biofilm production was inhibited in all strains.		moderately reduced. Biofilm production was inhibited in all strains.			
Tulips	Phenolic and anthocyanin extracts	AH, BC, BS, ECL, EC, KP, LM, PV, PA,	Extracts were most effective against S. aureus, L. monocytogenes and Y. enterocolitica	19		
		ST, SA, YE, SC, CA				
Cranberry	Anthocyanin extract	LM, BC, BS, ML, EF, SA, EC, EA, ST,	Extracts were most effective against B. cereus and M. luteus, but all tested strains	20		
		SAG	demonstrated growth inhibition			

Research aim

Antimicrobial efficacy of anthocyanins from tulips

- Optimization of anthocyanin extraction and fractionation at lab-scale
- Chemical characterization
- Determination of antimicrobial efficacy of crude extracts and single anthocyanin molecules

Extraction and characterization procedure

share your talent. move the world.

Concentration

Isolation of Delphinidin-3-O-Rutinoside from tulip anthers

Line#:1 R.Time:----(Scan#:----)

MS Spectrum

Determination of bio-activity

Bacterial species:

- *S. Aureus* ATCC259323
- *E. Coli* ATCC25922
- *K. Pneumoniae* ATCC13883

Procedure:

- Growth 18 hrs, 37°C
- Optical Density 630nm every 10min

Analysis:

- R-package 'GrowThis'
- Visualisation,
- Growth curve analysis based on 'Growthcurver'

Concentration-response analysis

23-06-2022 Minimal Bacteriocidal Concentration (MBC)

Tulip anthocyanins demonstrate selective and pHdependent antimicrobial efficacy

S. aureus	MIC	IC ₅₀	IC ₉₀	K. pneumoniae	MIC	IC ₅₀	IC ₉₀
Crude anther extract pH6 (<i>N=2</i>)	18 μg/mL	7,5±2,12 μg/mL	15±4,24 μg/mL	Crude anther extract pH6 (<i>N=4</i>)	150 μg/mL	61,5±3,87 μg/mL	81±4,9 μg/mL
Crude anther extract pH7.4 (<i>N=2</i>)	36 µg/mL	10,5±2,12 μg/mL	19,5±2,12 μg/mL	Crude anther extract pH7.4 (<i>N=2</i>)	75 μg/mL	29,25±1,5 μg/mL	41,25±10,8 μg/mL

E. coli	MIC	IC ₅₀	IC ₉₀
Crude anther extract pH6 (<i>N=2</i>)	36 μg/mL	21 μg/mL	31,5±6,36 μg/mL
Crude anther extract pH7.4 (<i>N=2</i>)	75 μg/mL	40,5±2,12 μg/mL	36 μg/mL

Tulip anthocyanins demonstrate selective and pHdependent antimicrobial efficacy

S. aureus	MIC	IC ₅₀	IC ₉₀	K. pneumoniae	MIC	IC ₅₀	IC ₉₀	
Crude anther extract pH6 (<i>N=2</i>)	18 μg/mL	7,5±2,12 μg/mL	15±4,24 μg/mL	Crude anther extract pH6 (<i>N=</i> 4)	150 μg/mL	61,5±3,87 μg/mL	81±4,9 μg/mL	
Crude anther extract pH7.4 (<i>N=2</i>)	36 μg/mL	10,5±2,12 μg/mL	19,5±2,12 μg/mL	Crude anther extract pH7.4 (<i>N=2</i>)	75 μg/mL	29,25±1,5 μg/mL	41,25±10,8 μg/mL	
D3R fraction pH6 (<i>N=1</i>)	150 μg/mL	222 μg/mL	381 μg/mL	D3R fraction pH6 (<i>N=1</i>)	300 μg/mL	210 μg/mL	291 μg/mL	
D3R fraction pH7.4 (N=1)	75 μg/mL	42 μg/mL	78 μg/mL	D3R fraction pH7.4 (<i>N=1</i>)	75 μg/mL	48 μg/mL	69 µg/mL	
D3R pH6 (<i>N=1</i>)	300 μg/mL	195 μg/mL	297 μg/mL	D3R pH6 (<i>N=1</i>)	No inhibition	No inhibition	No inhibition	
D3R pH7.4 (<i>N=1</i>)	36 μg/mL	To be determined	To be determined	D3R pH7.4 (<i>N=1</i>)	75 μg/mL	57 μg/mL	72 μg/mL	
E. coli	MIC	IC ₅₀	IC ₉₀					
Crude anther extract pH6 (N=2)	36 μg/mL	21 μg/mL	31,5±6,36 μg/mL	D3R and D3R fraction -> no inhibition				
Crude anther extract pH7.4 (<i>N=2</i>)	75 μg/mL	40,5±2,12 μg/mL	. 36 μg/mL	share your talent, move the world.				

Conclusions and future perspectives

- D3R demonstrates antimicrobial efficacy against *S. aureus* and *K. pneumoniae*, but not against *E. coli*
- Efficacy appears to be pH dependent
- Characterisation and isolation of anthocyanins in tulip leaves
- Determine efficacy of crude extracts and individual components
- Determine efficacy of anthocyanin-combinations
- Insight in structure-function relationship
- Insight in synergistic/ antagonistic effects
- Membrane stress responses in *S. aureus*

Acknowledgements

- Marjon Kuiper
- Neeltje Kooi
- Janneke van der Til
- Ron Hulst
- Michiel Noback
- Doede Binnema
- Andre Heeres
- Erik Keller
- Jan Wever
- Wynand Alkema
- Jeanine de Keyzer
- Marieke Mazenier
- Isolde Ebbinge
- Amy Ainge
- Jarmo Feenstra

