CRISTOFF; a control system for the modification of industrial micro-organisms

Finding (off-target) deletions in CRISPR/Cas9 modified genomes using Nanopore long-read sequencing

Van Nassauw, Daan. **Project/Research Group:**

Contact information:

SMART Fermentation - BBBP d.vannassauw@avans.nl January 18th, 2024

BACKGROUND

The genetic engineering process to boost desired properties in industrial micro-organisms is commonly performed using the Nobel prize-winning <u>CRISPR/Cas9 technique</u>. This modification method shows high on-target successes, but is simultaneously prone to introduce unintended cuts/breaks in the DNA, that directly affect the micro-organism's health:

STATE-OF-THE-ART DETECTION

OFF-TARGETS

Date:

PROBLEM

Even though the prediction methods are increasingly improving, these limitations remain:

- Targeted validation approaches tend to miss unpredicted off-targets (1)
- Validation methods utilizing short-read sequencing don't cover large modifications (2)

CRISTOFF

CRISTOFF uses (Oxford Nanopore Technologies) long-read sequence data (A) as input in the analysis pipeline (B) and returns the detected deletions

PERFORMANCE REVIEW

Table: (un)modified A. niger strains used to benchmark the detection capacities of CRISTOFF

	Strain name	Expected deletions	Predicted deletions	Recall (%)
ns	CP1	0	7	100
trai	CP2	6	14	100
er s	CP3	10	22	100
nige	CP4	20	45	100
ns	CP5	42	55	100
.gill				
ber	CP13	52	61	96.2
As	CP14	61	71	96.7

Deletions (HTML)

REFERENCES

- 1. Vicente MM, Chaves-Ferreira M, Jorge JMP, Proença JT and Barreto VM (2021) The Off-Targets of Clustered Regularly Interspaced Short Palindromic Repeats Gene Editing.
- 2. https://www.bcgsc.ca/news/new-study-illustrates-benefits-long-read-sequencing-technology-precision-oncology

- CRISTOFF captures all on-target deletions, as long as the input data is \bullet complete and of standard quality
- The user is provided with the on- and potential off-targets to manually \bullet follow-up on
- CRISTOFF works great on haploid genomes, but was not tested on lacksquarediploid genomes
- Platform will be extended to detect other variant types, such as \bullet insertions, as well

CENTRE OF EXPERTISE

WWW.MNEXT.NL

